Subalgebra \(A^{35}_1\) ↪ \(C^{1}_3\)
7 out of 16
Computations done by the calculator project.

Subalgebra type: \(\displaystyle A^{35}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_3\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{35}_1\): (10, 16, 9): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-3}\)
Positive simple generators: \(\displaystyle 9g_{3}+8g_{2}+5g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/35\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}70\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}}\)
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra.\(g_{3}+8/9g_{2}+5/9g_{1}\)\(-g_{7}+5/8g_{6}\)\(g_{9}\)
weight\(2\omega_{1}\)\(6\omega_{1}\)\(10\omega_{1}\)
Isotypic module decomposition over primal subalgebra (total 3 isotypic components).
Isotypical components + highest weight\(\displaystyle V_{2\omega_{1}} \) → (2)\(\displaystyle V_{6\omega_{1}} \) → (6)\(\displaystyle V_{10\omega_{1}} \) → (10)
Module label \(W_{1}\)\(W_{2}\)\(W_{3}\)
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
\(-9/5g_{3}-8/5g_{2}-g_{1}\)
\(9/5h_{3}+16/5h_{2}+2h_{1}\)
\(2/5g_{-1}+2/5g_{-2}+2/5g_{-3}\)
\(-g_{7}+5/8g_{6}\)
\(-3/8g_{5}-5/8g_{4}\)
\(-3/4g_{3}-1/4g_{2}+5/8g_{1}\)
\(3/4h_{3}+1/2h_{2}-5/4h_{1}\)
\(-3/2g_{-1}+3/8g_{-2}+g_{-3}\)
\(-15/8g_{-4}-5/8g_{-5}\)
\(-5/4g_{-6}+5/4g_{-7}\)
\(g_{9}\)
\(g_{8}\)
\(2g_{7}+g_{6}\)
\(3g_{5}-g_{4}\)
\(6g_{3}-4g_{2}+g_{1}\)
\(-6h_{3}+8h_{2}-2h_{1}\)
\(-6g_{-1}+15g_{-2}-20g_{-3}\)
\(-21g_{-4}+35g_{-5}\)
\(-56g_{-6}-70g_{-7}\)
\(126g_{-8}\)
\(-252g_{-9}\)
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(10\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(-10\omega_{1}\)
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(10\omega_{1}\)
\(8\omega_{1}\)
\(6\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
\(-6\omega_{1}\)
\(-8\omega_{1}\)
\(-10\omega_{1}\)
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\)\(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}
\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\)
Isotypic character\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\)\(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}
\oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\)

Semisimple subalgebra: W_{1}
Centralizer extension: 0


Made total 7213 arithmetic operations while solving the Serre relations polynomial system.